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1. INTRODUCTION

The phenomenon of cavitation was described by Euler (1)* in 1756 in
his theory of turblnes. He noted that an insufficlent pressure, or even
a large pressure in a perfect fluid, can cause disagreement between theory
and experiment and can result in a state of zero resistance. Since Euler's
introduction to the concept of the formation of cavities in a fluid, the
phenomenon has been the subject of a large mumber of scientific investi-
gations(2).

Cavitation is a dynamic process involving the formation and collapse
of vapor-filled cavities in a liquid in motion. In normal liquids these
cavities form if the local pressure drops below the vapor pressure. Con-
versely, a collapse occurs vhen a cavity is transported into a region of
higher pressure. The collapse process cen be strongly influenced by the
collision between a cavity and a rigid object.

Essentially,there are two types of cavitation. In the first the
cavity remains fixed with respect to a bouading surface and usually is
observed in hydraulic machinery. As Euler(l) and, later Barnaby(3) noted, an
important consequence of this is a decline in machinery efficiency. 1In fixed
cavitation the main flow leaves the guiding surface and follows a free tra-
Jectory which usually returns to the surface at some downstream point. The
fixed cavity occupies the space between the solid guiding surface and the free
liquid surface. Knapp(l4) has suggested that this type of cavitation is quite

different from the second type, which is characterized by discreet cavities

* Numbers in parentheses refer to references at the end of the paper.




moving with the fluid. The model for this type of cavitation is the
collapse of a spherical bubble.

Even though a typical cavity in water is approximately only one
centimeter in diameter, it may collapse violently and generate pressures
of the order of hundreds of kilobars. It is not clear which aspect of the
collapse is responsible for damage, such as the pitting of propellers.
After the collapse a pressure wave is propagated outward in the form
of a shock wave, which may cause some damage to neighboring rigid sur-
faces. On the other hand, the wori: of Kornfeld and Suvorov(5) indicates
that the real damage is done when the cavity strikes the object and not
by a Pressure wave initiated by a collapse.

To investigate the phenomenoncofa cavity collapse completely, account
should be taken of the vapor inside the cavity and the effects of viscosity,
surface tension, and compressibility. The stability of the process should
also be considered. So far, theoretical investigations have treated these
properties in isolation (or at best have considered two simultaneously,
neither of which was compressibility) and the present work is an extension
of considerations which have only dealt with liquid compressibility.

One of the earlier theoretical investigations concerning the collapse
of a spherical cavity was made in 1917 by Lord Rayleigh(6). He refers to
and extends the work of Besant(7) who calculated the pressure distribution
at the time of collapse. Besant's statement of the problem is . . . "An
infinite mass of homogeneous incompressible fluid is acted upon by no
forces at rest, and a spherical portion of the fluid is suddenly anni-
hilated; it is required to find the instantaneocus alteration of pressure
at any point of the mass, and the time in which the cavity will be filled

up, the pressure at an infinite distance supposed to remain constant."
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Rayleigh integrates the equation of continuity to obtain the velocity

distribution for the flow. He derives the following expression for the

velocity, Rzﬁ
’ i (1.1)

where dots indicate differentiation with respect to time, R i1s the cavity
radius, and r is the radial coordinate. For the motion of the cavity
wall, with the use of the principle of conservation of total energy, he

obtains

R+ 28 - B (1-2)

P

vhere P, is the pressure in the fluid at rest and p 1s the density.

Lord Rayleigh also derives for the pressure that

2= Ry

po X 3. (1'3)

From Equation 1.2 R=U= -o00 whenR = O.. Equation 1.3 shows
that when R = O, the pressure p i1is infinite for finite values of r.
Therefore, the energy distribution is infinite and singular at that in-
stant. Rayleigh also shows that if the original cavity radius is R, the
collapse time is proportional to

rop™/2 p-1/2 (1.4)

and is therefore always finite. Equation 1.4 follows directly from
dimensional considerations.

Rayleigh realized that compressibility should be considered in the
later stages of high speed collapse, and referred to work‘’by Cook who
. took account of the compressibility of the cavity contents (he assumed
that the cavity was not empty and that the contents obeyed Boyle's law)

but not of the surrounding liquid. Cook examined the mode of collapse
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when the cavity strikes a rigid sphere. His approximation yields plausible
pressures (68 tons per square inch in a particular example) and predicts
that the collapse velocity will be zero before the cavity reaches its
minimum radius, i.e., that the collapse time is infinite. However, since
his work does not account for the compressibility of the surrounding media,
it is not satisfactory from a theoreticel point of view.

Investigations concerning the roles of surface tension and viscosity
have been carried out by Paritsky(8) and also by Shu(9). Poritsky discusses
the collapse or growth of a spherical cavity in an incompressible viscous
fluid and he points out and resolves the following interesting peradox con-
cerning the role of viscosity. According to the equation of continuity

for the motion of an incompressible fluid with spherical symmetry, the
velocity V is given by olt 5>
7- =Rz, (1-5)
r

vhere c¢(t) is an admissible time function and ?r is a unit vector along

the radius r. Hence we can define a velocity potential ¢ as follows,

¥=v¢, ' (1.6)
c(t
golthiat P =-- i;l . (1.7)
2
Since 4) = 0,
2

v = Vv )= V(V 4>)= o (1.8)

so that the viscosity term in the Navier Stokes equations

> > -

p——-—gz = F = gradp + qu\?, (1'9)

vanishes and they reduce to the Eulerian equations of motion.




Poritsky resolves the paradox by noting that while it is true that
the effect of viscosity vanishes in the equations of motion, so that the
resultant viscous stress per unit volume at any point in the fluid domain
vanishes, this is not necessarily the case with the stresses themselves.

At any point the three principle stresses p; and strain rates e are

given by 5
Pi=-D-~- 3 u( e + e, + e3) + 2ueq, (1.10)
(i = 1,2,3). But for an incompressible fluid,

+e, +e

& *t et e;=0, (1.11)

and hence we may calculate the pressure at the cavity wall from Equation
1.10. We may not calculate the pressure from the pressure in the fiuid
at the cavity wall, and if p 1is this fluid pressure, then for the pressure

Po at the cavity we have
P5 = P - 2ue. (1.12)

Here p 1is the coefficient of viscosity and e 1is one of the components
ej. As Poritsky emphasized, viscosity only enters the problem in this
boundary condition.

Poritsky is mainly concerned with the kinematics of the collapse and
he does not calculate the veloclity or pressure fields. It is apparent that
if compressibility is accounted for, then the role of viscosity remains
in the Navier-Stokes equations. Also, we no longer have the ZOndition
imposed by isochoric motion, i.e., Equation l.l1l.

Poritsky finds that

Po - Po_fip 43 (R)2 420
P 2° [

oitd .

s (1.13)
where Po is given by Equation 1.12 and Poo is the pressure in the fluid

at rest. The modifications of Equation l.13 to admit the effect of surface

e e——




tension is

é 5 (1.14)

]
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where ¢ 1s the surface tension constant.

He finds that the collapse time is infinite for some values of the
coefficient of viscosity and Shu establishes rigorously (with modi-
fications of the Pbincaré-Bendixon theory of non-linear differential
equations) that the time of collapse is infinite if a non-dimensional
viscosity c¢ 1is greater than a critical value co((Jrg) and is finite
otherwise. Poritsky shows by means of a numerical example that 1if surface
tension is accounted for, then the collapse time is finite and Shu claims
that this can be shown to always be true. Poritsky also.shows that surface
tension speeds up the collapse. It should be noted that Rayleigh's theory
always predicts finite collapse times.

Zwick and Plesset(10) investigated the dynamics of small vapor bubbles
in an incompressible, inviscid liquid. Their main conclusions may be sum-
marized as fo}lows- The vapor pressure at the cavity wall is determined
by the temperature there. Due to the latent heat required for evaporation,
a change in bubble size willlead to heat transfer across the bubble wall
causing the surrounding liquid to heat when the bubble gets smaller and
to cool during bubble growth. Heating the liquid causes an increase in
the vapor pressure and hence slows down the collapse.

The results obtained by Zwick and Plesset show that, even though the
temperature of the bubble wall increases rapidly during the later stages
of collapse, the motion of the cavity wall agrees very closely with that
predicted by Rayleigh. Hunter(ll) concludes from these results that the

final collapse may take place too rapidly for the vapor to condense and




that the vapor cavity may collapse as an empty cavity until the vapor
pressure becomes sufficiently large to cause the cavity wall to rebound.
Plesset(12) has derived the equation of motion for the bubble radius

R in an inviscid, incompressible fluid. He finds that
[ ]
w322 _ (p(R) - Po),

R¥+ 28 . ((R) - %) -
P
where p 1is the liquid density, Po is the external pressure at r = oo,
and p(R) is the pressmre-in the liquid at the bubble boundary and is
given by
p(R) = py(T) - 20/R. (1.16)

o
Here py(T) is the equilibrium vapor pressure corresponding to temperature T
at the bubble boundary.

The efifect of compressibility on the collapse of a spherical bubble
has been considered by Gilmore(l3), Brand(l9) and Hunter(ll). Brand(19)
integrates the Eulerian equations of motion numerically using the method
of characteristics and compares results with those obtained by solving
the Lagrangian equations in series. A Tait equation of state is used,
and viscosity and surface tension are neglected. Hunter also carries out
a calculation by the method of characteristics but continues up to the in-
stant of final collapse, while Brand's results stop short of this.

Hunter noted from his numerical results that the motion in the neigh-
borhood of the collapse is self similar, to a high approximation. However,
in formulating his similarity theory, Hunter 1s forced to approximate vacuum
conditions at the cavity wall.

In Hunter's theory there is, in contrast to Rayleigh's theory, no
singular energy distribution at the time of collapse. The similarity

solution predicts an infinite velocity at the time of collapse but gives




finite pressures for all radiasl distances at this time. Hunter shows that
compressibility retards the collapse process.

The collapse of a cavity in an incompressible fluid has been shown to
be unsteble by Birkhoff (1k4).

The present paper 1s essentially an extension of the work of Hunter.
The existence of a self-similar hypothesis is shown to be implied by
dimensional arguments. Hunter's zero order boundary condition, that the
sound speed 1s zero at the cavity wall, is corrected by use of a per=-
turbation scheme which is developed in the text. Also, several of Hunter's
results which rely on energy considerations are more suitably obtained here.
It 1s also shown that the cavity wall velocity 1s decreased when account
is taken of the non-zero csound speed at the cavity wall. T@is collapse

.

velocity correction is obtained without numerical integration of the
equations governing the first approximation to the non-self-similar motion.
Since this result is the main object of the paper, the perturbation equations
are not integrated here although the procedure for doing this is described

in full.




2. FORMULATION OF THE PROBLEM

(1) sSimilarity and Dimensional Techniques. Analysis of the

Primitive Equations.

The symmetrical collapse of a cavity ia water is an example of un-
steady motion of a compressible fluid with spherical symmetry. Under
certain conditions, as shown by Taylor(20), Sedov(1l5), Stanyukovich(16)
Guderley(21) and other authors, the prohlem may be investigated by
similarity techniques. We shall discuss the concept of self-similar
motion, and thea investigate the possible self-similar characteristics
of the collapse problem.

A motion is said to be self-similar if the spatial distribution of
the flow parameters at a certain instant is identical with that at any
other time, apart from a change in scale.

The unsteady motion of a gas with plane, cylindrical or spherical
symmetry, obeying a certain type of equation of state, can be shown to be
self-similar provided that the number of constants which arise with
independent dimensions does not exceed two. For completeness we shall
include the discussion of this point given by Sedov. Much of this is
relevant to Hunter's analysis of the cavity collapse problem.

Let us analyse the dependent variables and fundamental parameters
arising in unsteady motion in one space coordinates. In the Eulerian
formulation, the physical variables may be taken as the velocity v,
the density p, and the pressure p. The characteristic parameters are
the radial distance r, the time ¢, the dimensional constants which

enter into the problem, and the boundary and initial conditions.

'\
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Since the density and pressure have dimensions which contain the mass,
at least one constant a, must have mess occurring in its dimensions. We
can assume that the dimensions of & are

[e] = mfT°. (2-1)

Then we may write for the velocity, density, and pressure
r __a _ a
vt Psgss N P mI e (2-2)

where V, R and P are arbitrary and can depend on non-dimensional com-
binations of r, t and other parameters.

But if another constant b entering the problem has dimensions
independent of a, and all other constants have dimensions depending on

a and b only, then we may write

[v] = LPT". (2.3)

Now the number of independent variables that can be formed by combination
of a and b is reduced to one, and the variables v, p, p will depend on

this one non-~dimensional variable. Moreover, this variable will be

mn

rt
— (2.4)

and if m#o0, this similarity variable is equivalent to a variable
A =—rra—g vRere = - g (2:5)
b t

Hence we have shown that if there are only two dimensional constants with
independent dimensions, then the motion is self~similar. We now investigate
the equations governing the collapse problem and determine the number of

constants with independent dimensions.

————ee ‘




(2) The Role of the Energy

It is useful to clarify the role of the energy in the present problem.

The total energy of the flow is given by

/P[f +4 U] 4 ridr, e

where E is the internal energy and u i1is the velocity. It will be seen
later that the similarity solution to the present problem is valid within

a small spherical domain (approximately one centimeter in diameter). Hence
energy considerations are strictly inapplicable in determining a lower

bound for the similarity parameter, since the functions u and 8 given

by the similarity solution cennot be used to compute the relation given by Eq.
2.6 . But if the veloci‘c:y distribution and expressions for 6 are derived
by integrating the governing partial differential equations exactly, then

we can impose the condition that energy integral (Equation 2.6) should

converge uniformly.

(3) The Model

We now describe the model of collapse and the dimensional consequences
of this model. Following Hunter (see footnote, ibid. pg. 246) we shall
consider a cavity initially of infinite size which has been collapsing for
an infinite amount of time. As he points out, the‘ motiviation for this
model coires from the incompressible treatment. For from conservation of

total energy (using Rayleigh's incompressible treatment) we have

3
2 _2 Ro’ _ 1y,
(5D
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and for Ro>> R, we see that e2 o 2.‘poRo§

R . (2.7)
3oR

Therefore the motion does not depend on the scales po and Ro separately

but on their combination. and since ]>°Rb5 is equal to I?E » Where E is

the initial energy of the system, and if we let Po— o a.nt;’.-r Ro 00 in

such a way that E remains constant, then the flow is formally determined

by the parameter E alone. We are now in a position to formulate the

problem.

(4) Equations of Motion, Boundary Conditions, Initial Conditions

The momentum equation and the continuity equation corresponding

to unsteady motfon of a gas with spherical symmetry are respectively:
ou! ou' 1 '
S+ w3 Br-o (2.8)

%t + “'sf—a," v (a2 )0, (2.9)

vwhere the& primes are used for dimensional quantities.

The Tait equation of state for water(22) may be written in the form
[
PLErB_ el y, 2.10
5 = (&) (2-10)
Here B and p, are slowly varying functions of entropy and they may be
assumed to be constant; & is taken equal to 7 in the future calculations.

The velocity of sound c¢' 1s given by

' 18‘1
et = ( %%r)s = iﬂ%—’ (2.11)

Pe
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and if e¢' = co when p' = py, then
2
poto = &B. (2.12)
Following Hunter we shall use the three dimensional scales E, po, Co

to express all variables in dimensionless form. We then have (where

variables without dashes are non-dimensional)

3/2
W' = Weo, ¢' = cco, p' =p pg, ' = —2- /
2 2 0 2 po
(2.13)

s [—E PP
& RS € - &

where the unprimed quantities are dimensionless.
Then, using Equations 2.10, 2.11, 2.12, and 2.13, Equations 2.8 and

2.9 may be written:

. 3_ sudt s 31_ g.c_ (2.14)
%‘5 + ua—- +(31)e? (a2 o (2.15)

The boundary conditions are

€ =1and 8=R at the cavity wall, r = R (2.16)
and ¢ .
c »lLasr > oo (2.17)

We observe that in the incompressible treatment condition (Equation 2.16)
would determine the motion. The effect of compressibility is felt through
the initial conditions and hence the spatial variables must have an
assigned distribution at a given time. Hunter uses the results of
Rayleigh's incompressible treatment to derive initial conditions. From

Equations 1.1, 1.2, and 2.7 it follows that




1k.

(1)*/5 '
R v S5r as =t >» oo
: -6 8 .18
2 ors sigea s [, o] | e

These initial cpnditions are specified as t 2> -oc0, when the fluid can -
be regarded as inc;a;ressible- Hence the realistic conditions in the final
part of the collapse have been preserved and the Equations 2.1k4, 2.15, 2.16,
2.17 and 2.18 completely specify the flow.

The governing Equations 2.8 and 2.9, together with the associated
boundary and initial conditions @axibe replaced by the equivalent system

Equations 2.13, 2.14, 2.15, 2.16, 2.17 and 2.18 . We then see that three
constants with independent dimensions arise, namely, c¢o, po, and E. To
satisfy the requirements of similarity, one of these must be eliminated.
Hunter puts Co equal to zero, which means that vacuum conditions apply at
the cavity wall. Hunter's Jjustification for this step is that, although
the dimensionless sound speed at the cavity wall is in fact equal to unityb
in the region where similarity solution applies c2;n> 1.

In the present analysis we take account of the fixed sound speed at the

cavity wall; (note that Equation 2.12 shows that ¢, = O implies B = O and

hence a perfect gas law for water) our development will be a perturbation

of Hunter's similarity solution such that his solution is the zeroth

approximation of our perturbation scheme.
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3. CAVITY COLLAPSE WITH A NON-ZERO SOUND SPEED AT THE CAVITY WALL

(1) Perturbation Theory

In the present problem three dimensional constants enter so that the
similarity hypothesis 1s violated. Several investigators have dealt with
similar situations, particularly in explosion problems. Sedov(1l5) discusses
the point explosion while taking counter pressure into account. A similar
technique was employed by Sakurai(l7) in the problem of a blast wave prop-

agation with counter pressure. The analysis given here is similar to that

of Sakurai.
We define
. » 2 2
U = Ref(x,¥), ¢ = Rge(x)y) (3-1)
r cjr =R _ 1
where X =& and y = = '1'{; 3 (3.2)

8 _1is the fluld velocity, f{H is the velocity of the cavity wall as given in
Hunter's treatment (i.e. from self-similar equations), and ¢ is the sound
speed. Here x 1s the same parameter used by Hunter. in his self-similar
solution and y 1is our perturbation variable. All quantities are dimension-

less. We shall expand f and g in powers of y2 as follows:

f = f(o) + yaf(l) + y‘+f(2) + . 0. (3.3)

g = (@) s 2 e e (3.4)

where f(i) and g(i), i

0, 1,...yn so are assumed to be functions of
X alone.
We are assuming that Hunter's solution is a valid zeroth approximation
and hence we accept his determination of a similarity index n defined by
?R.R =1 - -—t =M, a constant. (3.5)

"x
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Hunter finds that n has the value .5552, and a complete discussion of his

method may be found in the appendix. (It is noteworthy that the use of

Equation 3.5 simplifies the analysis to follow; namely, the derivation of

the non-self similar equations to determine f(i), g(i) forl=1, 2, ..., ;.)
By substitution of Equations 3.1 and 3.5 in Equations 2.14 and 2.15, and

by use of the expressions

3_1 3
d xR )
w4 - ,

we obtain, after some reduction
2
cx ool Ky E e E L Ix (2K,
and °
-x%-o- hxg -k(y%-&-f% -2f§£
ve@1) (Zag -y o (3-9)

Substituting EqQuations 3.3 and 3.4 into Equations 3.8 and 3.9 respectively
and coumparing coefficients of unity and y2 we obtain the zero and first
order approximations. The equations may be arranged as follows:

Zero order approximation
3
[66©)- (x_f(o))aj%;(‘:l ROI? SRRy ON £ 5 (01
. X

v 2lo)glo) =2y ‘ (3-10)

[8(0)-(x-f(0))2] %;5—(0)" K0y 4 g(0) () [.'}‘((8"1)* o M- g(g_lﬂ
L g @y, P [ 2 -] (3-22)




First order approximation

[kf(O)- x) (°{] df (1) (x) + f(l) (x)

[(202)- x - )] S8 UCON Sx) + 2Ny (x).
p, = 287, (0 | (o)

. Here

= x, (- ,,Xf<o) (o) (o) a_if(o)"‘
g“: (O) +g(°)[ x(g3-1) ~ 'tg:

By = 24fx - f(°)fx(°)(b’-1) + X (©) (1) + f(°)(2 (¥-1) -H(¥-1)

2
gy M (@ 2@ | M@ | 2

2
By, = xf ). 2 fe()_ (o) X(O) . %& £(0)

e &) +g(o)[ L]

x -l

(2) Boundary Conditions

A8 we have seen, the exact boundary conditions are

us= ﬁ at r =R

and c=latr=R

Let us first consider the zero order approximation . Then we have

u= Ref(x,0) = 22 (x),
¢ = i (x,0) = el (x).

and

~ 17'

(3:}2)

(3.13)

(3.14)

(3-15)

(3.16)

(3-17)

(3.18)
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The functions f(o) and g(o) are solutions of Equations 3.10 and 3.11. They
are precisely the functions that occur in Hunter's treatment. We see that
we are unable to satisfy the exact boundary condition (Equation 3.16) in the
zero order solution (Equation 3.18), and hence to this degree of approximation
we have g(o)(l) = 0. Obviously condition (Equation 3.15) is satisfied by
setting f(°)(1) = 1.

We now substitute the complete expansions (Equations 3.3 and 3.4)
into Equation 3.1 and apply the boundary conditions given exactly by

Equations 3.15 and 3.16, namely,

uly o g = RgF(LE ) = Ry [f(°)(1)+ %éf(l)(l) +i.0] =R (3-19)
N Ry A
calr =R " figg(l,-;-n) = ﬁg[g(o)(lh -;—;g g(l)(l)-i» . . ] =1 (5.0)
Therefore, if we set
f(i)(l) = s(i) for i = 1,2,...n, where B(i)is to be (3.21)
determined, and
g1y =1, &1y =0fori=2, 3 ...n; (3.22)
then we can satisfy the boundary conditions exactly.
Therefore, the boundary conditions for the similarity Equations
3.10 and 3.11 are:
f(°)(1) =1, (3.23)
and
&) = o. (3.24)
For the first perturbation of the self similar solution we have
£ gy = @) (3.25)

S(l)(l) = 1. (3’26)
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We shall now discuss the zero order equations, closely following

Hunter's development. Since Hunter does not tabulate the functions
f(o) » g(o) it is necessary to integrate Equations 3&@9&}.114 In the

following discussion we shall also show that these solutions can be fixed
without appeal to the energy considerations used by Hunter. Further,
Hunter's discussions of the singularities of Equations 3.10 and 3.11 will

be clarified.

4., THE SELF SIMILAR BEQUATIONS

In the appendix a complete discussion of the following items

is given:

() The transformation theory employed by Hunter in his
solution of the se.lf similar equations.

(v) A discussion of the singular points of the transformed
equations.

(¢) The application of techniques given by Stanyukovich(16)
which yield the same conclusions as those obtalned by
Hunter but which do not require the use of energy arguments.

(d) A discussion and results of the numerical integration of the
transformed equations. (Hunter gives the solution curves
but he does not tabulate the functions f(o) and g(o). Since
they occur in the coefficients of the non-self similar equations

it was necessary to repeat the integration).
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In Figure 1 we give the results of the integration of the self similar
equations; Table 1 is a tabulation of the function f(o), g(o). It is
important to note that the parabola (f(o) - x)a-g(o) locates the singular

points of the f(oz g(o) and f(l), g(l) equations.
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5. ANALYSIS OF THE NON-SELF-SIMILAR EQUATIONS

The non-self-similar motion is described by Equations 3.12 and 3.13.
These equations are linear differential equations with non-constant
coefficients having singular points at the same location as the non-linear
Equations 3.10 and 3.11; namely, at the two points where the quantity
g(o) - (x - f(o))2 vanishes. Obviously this vanishes at the cavity wall
x = 1, and the numerical integration of the non-linear equations shows
that the expression also vanishes at x = 1.51. The following expansions
are immediately obtained from the non-linear Equations 3.10 and 3.11.

Near the cavity wall x = 1.

£©) _ 1 _ 2.0200(x-1) + . . .

_” (5-1)
&°) = 4.8066 (x-1) + . . .
and near the singular point x = 1.51,
£(0) _ .58 - .57066 (x-1.51) + . . .
(5-2)

g°) = .86 + .ho9e23 (x-1.51) + . . .

When the expressions (Equation 5.1) are used in Equations 3.12 and 3.13,
the following expansions are found for f(l) and g(l); here the coefficient
B is arbitrary and must be determined from uniqueness considerations.

We have

e =1 - a1ssu(xr) + B (1) - 2.979(x-1) /64 L )

(5-3)
2
and (1), {'hLBOT + b So(acd) 4 9-176(x-1) } { 11359 +

3(1.166(x-1)1/ 6 6.hsh(x-1)7/ 6. . )}
{28.526 - 116.47(x-1) } {1 - 11.359(x-1)

“1728.165 + 1%0.309(x-1
+ B ( (x-1)7/6- 2.9"{9(x-1)l3/6 + e )} (5-4)




(1) Analysis at the Cavity Wall

We now consider the boundary conditions at the cavity wall.

velocity is given by
= ﬁH (f(°)+ léf(l) + .0 ),

and at the cavity wall
=N o), 1l 1l
R-RH(f( )+—2f( e . <)
or with
ﬁ'ﬁn'*'&(l))
where Ei(lJ is the correction to the self similar theory,

Ry + &P R + iﬁa f(l)(1)>.

From Equation 5.4 we have at x = 1,
£ o 96367,

and hence Equation 5.6 becomes

(1), _ -96367
S

and therefore the new velocity of the cavity wall 1s given by

21 Ry - -963617

The comparison between R end ﬁH is shown in Figure 2.

(2) Apalysis at the Singuiar Point x = 1.51

The

22.

(5.5)

(5-6)

(5-7)

(5-8)

(5-9)

with the use of expressions (Equation 5.2), Equations 3.12 and 3.13

have the following form in the neighborhood of the singular point X = 1.51:
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(1)
["1 (x-1.51) + ¢, (x-1.51)2 + cx (x-1-51)5_] gf (5.10)

-4+ Ao(x-1.51) + ﬂ3(x-1.51)2] g1 4 [2, + pa(x-l.51)+p3(x-l.51)3f(1?

1l
[%l(x-l-Sl) + ca(x-l-51)2+ c3(x-l.51)?J-%§( )

= [q_l + q,(x-1.51) g(l)+ )+ ry(x-1.51)+ r3(x-1.51)2]f(l). (5.11)
Here

by = 5-5178 q; = 1.94511

A, = 9-072h qQ, = ~2.16913

,'45 = -24.39LL v, = -4B06k

p, = <3151k r, = 2.1183

p, = 6:8%97 rs = -2.332k

ps = 8:8287 e, = 3-7T933

e, = 6.2369 g = 2.4668

At x=1.51 expansions for f(l) and g(l) given by Equations 5.10 and 5.11
show that
f(l)~(x-l-51)al (5.12)

o
e mr(x-1.51),2 (5.13)

where x and o have positive non-integral values. In fact the second
order equation which can be derived from Equations 5.10 and 5.11 has

an indicial equation with roots 2.79 and .374. Therefore, apart from the
solution f(l) = g(l) = 0, there are no regular integrals at the singular
point x = 1l.51. It is also important to note that if one function at x =

1l.51 is specified the other is fixed, since for example,
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{pl + p2(x-l‘51) + p3(x-l.51)?}f(l)

= fey(xe1.50) + ep(x-1.51)% + c5(x-1.51)3} &)

fy + Lptxro51) + Ly(x1.50) G, (5.14)

and there exists a similar expression for g(l) in terms of f(l) and
£(1)_

Hence we have the following situation. There are two singular points
in the field. The expansions, Equation 5.3 and 5.4, describe the be-
havior of f(l) and g(l) near the cavity wall singularity and also f(l) =
-.96367 and g(l)s 1.0 there, but there is an arbitrary constant B in
the expansions. At the singular point x = 1.51 there are an infinity of
irregular .integra.ls .

Let us consider the asymptotic behavior of solutions of the per-
turbation equations. For large values of x, the B's in Equations 3.12
and 3.13 become

B, ~ 2mx” "2

By~ -( M+ L.3M)x
55~ g x+ (20-™M)x
By~ -x " (cfu+ M)

-1.3
1.3 (5.15)

where 0 <€ M < 1 and in fact M - o0 as x increases. Therefore, from
Equé‘.‘i‘».ions 3«12 and 3.13 we see that the asymptotic behavior of f(l)

and g(l) is defined by

f(1 s 2 e x3

3 MG
(1), o1-602 (5.16)

€ 2

where ¢y and ¢, are arbitrary constants.
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Equation 5.16 shows that all integral curves define perturbation
variables which tend to zero at infinity so that the similarity solution
is approached as the distance from the cavity wall is increased.

To find the value of the constant B and the pair of integral curves
through x = 1.51 a further condition between the fluid velocity and
velocity of sound must be satisfied In the finite part of the field. This
can be derived from the characteristics solutions of Hunter or Brand.

It should be emphasized once more that the mcst useful product of the
perturbation scheme is the correction to the cavity wall velocity, and
this is found without integrating the governing equations throughbut. the
field.
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APPENDIX

(1) The Self Similar Equations

Following Hunter, we shall apply the following trzusformations to

Equations 3.10 and 3.11. Let

x = - £/ p(g) = £/aH400) )

(a-1)
2
a(6) = #/7H2(0) (),
where n = .5552.
Let us further transform according to
[
X = log(-5), Y = - €F, z =&. (A-2)
Then we may arrange the transformed equations into the form
ax: av: az = (v-1)%2 : [¥(¥-1)(ax-1)- § 2(9n¥ + n-1)]
:22 [~0z + TaY® + 2¢(1-52) + 1] . . (A-3)
Let us consider the equation for %% and for convenience for later dis-
cussion define y = Y-y,, 2z = Z-z5- Then from (A-3) we have
z + 8 + P
%% - 8, SUARCZOM (A-k)
bz + b,y + Qy,z)
where
2
P(y,z) = 2nyz + y (-n-1 + 3ny,) + ny°, (a-5)
and >
Q(y,z) = yz(4-20n + 28ny,) + z“(-2n) (A-6)

+ y2(lhnzo) + zya(lhnzo).




Also,
len
o = T3 7 Mo,
2

a,, = 1-3nz5 - 2(n + 1)y, + 2uyo,

bo=2+ Yo(4-20n) - 4nz  + lhnyoz,
and

by = Zo(l-20n) + 28nygzo-

Now if we let

y = vz,

then equation (A-U4) becomes

2
5 dv _a,, +a V- bV - b, v+ ZV]_(VIZ)’

dz
b+ bo.v + 2z WQ(V’Z)'

where

‘l/'/= (-1-n + jvnyo)v2 - 3nv + nv3z - l’-l»nzov3

+ 2nv -(4-20n + 28nyo)v2 = 1l+nv32,

and

% = lhnzov2 - 2n + (4-20n + 28nyo)v + lll»nvzz.

But for z = 0, from (A-9) we see that

2
Veoy * 815 "~ Pre’ “ PV =0

If we let \rl

then equation (A-9) becomes

23 = Ao V+Ap z+ Az +A

and we give some of the values of the A's as follows:

=% - Pjo-2vy by,

A
ol
b + by v,
2 3
Ay = (-1-n + 3nyo)v{ - >nv; - lhnz,v,
[}
b\o + 'bo,v
2av, + (4-20n + 28ny°)v' 2

)

b|°+ b \'s

ot

be a root of (A-12) and further define

'Vz+Ao,_V2+. o .

27

(A-T)

(a-8)

(A-9)

(Aa-10)

(A-11)

(a-12)

(A-13)

(A-14)

(A-15)

(A-16)

B ——— P —
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3 3 2
Alo" nv; - lhnv; -El.lmzov, - 2n +(4-20n + 28ny°)v’]A'o , (A-17)
bjo +boy Vu
Ay, = 2(-1-n +3yo)v, - 3o - hanzov,2
bio + by Vi
- +2nv, + 2(4-20n + 28ny°)v.
b'o + bo' vV,
- Ag, (ll&nzov,2 - 2n +(4-20n + ESDYO)V-)
- Ao [ (4-20n)z + 28nyoz°]

Equation (A-14) is of the form studied by Briot-Bouquet(18) and we shall
make use of their results while studying the solutions of Equation (A-k4)

in the neighborhood of its singular points.

ay

£5

(2) Discussion of the Singular Points of the
[ ]

Equation

From Equation (A-3) we readily find the gngular points to be located

in the (Y,Z) plane at

30), ( Ion, Ton2)s (1,0), (0,0) (A-19)

and at two points (E,D) of the parabola Z=(Y-1)2 given by the roots of

6nY>+ 2(1-4n)Y + (1-n) = O (A-20)

Instend of using energy considerations to determine which of the
roots of Equation (A-20) is appropriate we proceed as follows. Since the
cavity is collapsing, the velocity should diminish behind the front of the
spherical wave. In fact, this condition is necessary for the existence

of the similarity solution and defines the domain in which the solution




is valid. Analytically, this condition states that in a neighborhood

behind the cavity, we must have
ay y dx, (A-21)

and this should hold at the cavity wall. Due to the lncorrect boundary
condition imposed there, the inequality (Equation A-21) is undefined at
the cavity wall. However, if we assume Z = say .05 there, rather than
zero, then (Equation A-21) is defined and shows that unless we choose

the larger of the roots of (Equation A-20) we will have n £.4 which corres-
ponds to the incompressible case.

A criticism of this argument is that 1t leads to a sound speed at the

1

cavity wall proportional to 5

However, it is certainly admissible

in the context of Hunter's assertion of the existence of ; self similar
motion and from that pcint of view it is believed to he a more suitable
argument than that based on energy considerations. Moreover, Hunter's
numerical integration shows that in the neighborhood of the collapse, ﬁ
tends to a constant value.

We recall that in deriving the Briot-Bauguet form (Equati;n A-1k)

we let v, be a root of

2
by, V" + v(ay, - b,5) + 8, = 0. (a-22)

Here we shall show conclusively that we must, (Ft the point E defined
by Equation(A-20), and the sonic parabola z=(Y-1)%)
have the root of Equation(A-12) that is largesf in absolute value.

First we consider Eqpation(A-ao). From this we see that the
coordinate Y satisfies

1 1
T <Y « = (A-23)

Hence

%6 (A-24)
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and if we transfer the location of the singular point of the % equation

to the origin by means of the transformation

¥ = Y-y
© (A-26)

£ = Z-En
)

then, at the origin. the inequalities (Equations A-24 and A-25) become

1

T 3
(A-27)

1

A
N

Using arguments similar to those establishing the dY ) dX, we have, at E,

day >dz. (A-28)
But given a transformation of variables of the form (Equation A-26), it
is easy to show that %)0 implies %’-)0. For if a function t = p(q)

undergoes a lincar transformation which maps

t2>t

and _

a->q

such that (t - %)
and _

(¢ - q)

are of the same sign, then 4q >0 > 4q >0
dt at

and conversely.

Here T and q may be identified with y + Yo and z + z, respectively

o]

and these quantities are always positive. Therefore, this discussion

shows that we may restrict our attention to Equation (A-4) which defines

%‘ZL Now from Equation (A-12), and expressions (A-T) we see that
28,

Vy = - a]g,

8ot

a’ol & blO iJ (aol + bIO)a')"'(aol b|o - 8,0 bo])

(A-29)
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and that
v, = vy(n).

Then, since y = vz,

R

and at the point E we have
E - v,(a)>o0. - (a-x)
But Equation (A-7) and the fact that .4¢n<l shows that at E,

b, » and by, (A-31)

8 7 86 0

are all negative. Hence <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>